
Advanced Computer Architecture

Pipelining Hazards



2

Pipelining Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways



3

Structural Hazards

• Example: a unified instruction and data cache 
stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed
until a cycle is found when the resource is free  these
are pipeline bubbles

• Structural hazards are easy to eliminate – increase the
number of resources (for example, implement a separate
instruction and data cache)



4

Data Hazards



5

Forwarding

• Some data hazard stalls can be eliminated: bypassing



Forwarding Paths



7

Data Hazard Stalls



8

Data Hazard Stalls



9

Control Hazards

• Simple techniques to handle control hazard stalls:
•assume the branch is not taken and start fetching the next 
instruction 
•if the branch is taken, need hardware to cancel the effect of 
the wrong-path instruction fetch the next instruction (branch 
delay slot) and execute it anyway 
• if the instruction turns out to be on the correct path, useful 
work was done 
•if the instruction turns out to be on the wrong path, 
hopefully program state is not lost



10

Slowdowns from Stalls

• Perfect pipelining with no hazards  an instruction
completes every cycle (total cycles ~ num instructions)

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles


